Convergence theorems for inertial KM-type algorithms
نویسندگان
چکیده
منابع مشابه
ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملConvergence theorems for a class of learning algorithms with VLRPs
We first consider the convergence of the simple competitive learning with vanishing learning rate parameters (VLRPs). Examples show that even in this setting the learning fails to converge in general. This brings us to consider the following problem: to find out a family of VLRPs such that an algorithm with the VLRPs reaches the global minima with probability one. Here, we present an approach d...
متن کاملConvergence Theorems for -Nonexpansive Mappings in CAT(0) Spaces
In this paper we derive convergence theorems for an -nonexpansive mappingof a nonempty closed and convex subset of a complete CAT(0) space for SP-iterative process and Thianwan's iterative process.
متن کاملKhintchine-type Theorems on Manifolds: the Convergence Case for Standard
Notation. The main objects of this paper are n-tuples y = (y1, . . . , yn) of real numbers viewed as linear forms, i.e. as row vectors. In what follows, y will always mean a row vector, and we will be interested in values of a linear form given by y at integer points q = (q1, . . . , qn) T , the latter being a column vector. Thus yq will stand for y1q1 + · · ·+ ynqn. Hopefully it will cause no ...
متن کاملStrong Convergence Theorems for Solutions of Equations of Hammerstein Type
Let H be a real Hilbert space. A mapping A : D(A) ⊆ H → H is said to be monotone if ⟨Ax − Ay, x − y⟩ ≥ 0 for every x, y ∈ D(A). A is called maximal monotone if it is monotone and the R(I + rA) = H, the range of (I + rA), for each r > 0, where I is the identity mapping on H. A is said to satisfy the range condition if cl(D(A)) ⊆ R(I + rA) for each r > 0. For monotone mappings, there are many rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2008
ISSN: 0377-0427
DOI: 10.1016/j.cam.2007.07.021